6 research outputs found

    Network sharing and co-investments in NGN as a way to fulfill the goal with the digital agenda

    Get PDF
    The European Commission and most European countries have set ambitious broadband targets aiming to provide up to 100 Mbits to the end-customers. On back of a declining fixed market, negative growth for operators and a slow take up of fiber while maintaining high capex levels operators will ultimately be forced to take innovative approaches towards broadband investments. This paper relates co-investments in NGA to the regulatory framework in the form of SMP regulation and competition law making the conclusion that the current regulatory framework is sufficient to avoid a distorted competition on the market. A number of examples of ongoing co-investment projects are presented underscoring a growing interest for co-investments and indicating that co-investments, at this point, are not hampering competition. The mobile industry has gradually moved towards network sharing indicating a tendency towards vertical disintegration, although so far only a tendency. The ongoing structural separation of Telecom New Zealand with the establishment of a separate network and wholesale company is an indication of this development. The paper concludes by stating that regulators have appropriate tools to handle potential competition issues regarding coinvestments, that co-investments could be a vehicle for reaching the broadband targets, that there are efficiency gains for operators to make by lower Opex and capex, and ultimately giving network companies the means to utilize their balance sheet in order to increase the return.NGA,co-investment,SMP regulation,horizontal and vertical agreements,capex,network sharing,financial gearing

    Valuation of spectrum for mobile broadband services: Engineering value versus willingness to pay

    Get PDF
    Radio spectrum is a vital asset and resource for mobile network operators. With spectrum in the 800 and 900 MHz bands coverage can be provided with fewer base station sites compared to higher frequency bands like 2.1 and 2.6 GHz. With more spectrum, i.e. wider bandwidth, operators can offer higher capacity and data rates. Larger bandwidths means that capacity can be provided with fewer base station sites, i.e. with lower cost. Operators that acquire more spectrum in existing or new bands can re-use existing sites for capacity build out. Engineering value is one way to estimate the marginal value of spectrum. The calculation of engineering value is based on comparison of different network deployment options using different amounts of spectrum. This paper compare estimates of engineering value of spectrum with prices paid at a number of spectrum auctions, with a focus on Sweden. A main finding is that estimated engineering value of spectrum is much higher than prices operators have paid at spectrum auctions during the last couple of years. The analysis also includes a discussion of drivers that determine the willingness to pay for spectrum.Radio spectrum,mobile communications,spectrum valuation,spectrum allocation,mobile broadband,marginal value of spectrum,engineering value

    Mobile Broadband Expansion Calls for More Spectrum or Base Stations - Analysis of the Value of Spectrum and the Role of Spectrum Aggregation

    Get PDF
    The breakthrough for mobile broadband is taking the mobile communications industry into a new phase. The number of mobile broadband users in the world exceeds 400 million, and the share of the population in Western Europe with mobile broadband is around 10 per cent and over 15 percent in Austria and Sweden. This development has been propelled by the extensive diffusion of mobile modems (dongles) for laptops and smartphones given users ubiquitous access to mobile internet. Consequently, traffic volumes in the mobile networks have grown immensely, and the mobile data traffic surpassed the mobile voice traffic in the world by the end of 2009, and in for example Sweden, over 75 percent of the mobile traffic is data. --

    Scenario driven requirement engineering for design and deployment of mobile communication networks

    Get PDF
    The numbers of users and usage of mobile data service are increasing dramatically due to the introduction of smartphones and mobile broadband dongles. For the next decade the mobile broadband market is expected to grow and reach a level where the average data consumption per user is orders of magnitude greater than today. For the telecom industry it is a magnificent challenge to design and deploy these s high-capacity wireless networks taking into account limitations in cost, energy and radio spectrum. The objective of this paper is to highlight the need to consider a multitude of scenarios for the requirements, design and deployment of mobile broad band networks. The R&D has for many years been targeting high peak data rates enabled by improved spectral efficiency, adding more spectrum bands, aggregation of frequency bands and offloading to local wireless networks connected via public fixed phones or broadband. However, many of these features driving the technology development are representative for the conditions in US and Western Europe. The wireless networks also need to be designed assuming deployment in regions in the world where both the availability of spectrum as well as the penetration of fixed phones and broadband are limited. --Mobile broadband networks,cost and capacity,spectrum,deployment strategies,telecommunications,management of technology and R&D,economic development of natural resources

    Business Innovation Strategies to Reduce the Revenue Gap for Wireless Broadband Services

    Get PDF
    Mobile broadband is increasing rapidly both when it comes to traffic and number of subscriptions. The swift growth of the demand will require substantial capacity expansions. Operators are challenged by the fact that revenues from mobile broadband are limited, just a few per cent of APRU, and thus not compensating for declining voice revenues, creating a so called "revenue gap". Concurrently, mobile broadband dominates the traffic, set to grow strongly. In this paper we analyze the potential of different strategies for operators to reduce or bridge the revenue gap. The main options are to reduce network costs, to increase access prices and to exploit new revenue streams. The focus in the paper is on cost & capacity challenges and solutions in the network domain. Operators can cooperate and share sites and spectrum, which could be combined with off-loading heavy traffic to less costly local networks. In the network analysis we illustrate the cost impacts of different levels of demand, re-use of existing base station sites, sharing of base stations and spectrum and deployment of a denser network. A sensitivity analysis illustrates the impact on total revenues if access prices are increased, whether new types of services generate additional revenues, and if it fills the revenue gap. Our conclusion is that the different technical options to reduce the revenue gap can be linked to business strategies that include cooperation with both other operators as well as with non-telecom actors. Hence, innovations in the business domain enable technical solutions to be better or fully exploited.Wireless Internet access, data traffic, revenues, network costs, spectrum, deployment strategies, HSPA, LTE, operator cooperation, value added services, NFC, B2B2C.

    Telecommunication services in context

    No full text
    corecore